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Abstract. The Poiseuille flow of a KBKZ-fluid, being a nonlinear viscoelastic model for a polymeric fluid, is 
studied. The flow starts from rest and especially the transient phase of the flow is considered. It is shown that 
under certain conditions the steady flow equation has three different equilibrium points. The stability of these 
points is investigated. It is proved that two points are stable, whereas the remaining one is unstable, leading to 
several peculiar phenomena such as discontinuities in the velocity gradient near the wall of the pipe ('spurt') and 
hysteresis. Our theoretical results are confirmed by numerical calculations of the velocity gradient. 

1. Introduction 

In two papers [1] and [2], Maikus et al. analyzed a striking novel phenomenon in shearing 
flows of  non-Newtonian fluids called the 'spurt' phenomenon. They associated spurt with a 
material property of the polymeric fluid in contrast to the widely accepted explanation of spurt 
being the failure of the fluid to adhere to the wall ('wall slip'). In their analysis, this effect is 
due to a jump in the steady strain rate profile, leading to a dramatic increase in the volumetric 
flow rate. This phenomenon was also observed experimentally by Vinogradov et al. [3] in the 
flow of polymeric fluids through tubes. Similar effects are known in industrial applications, 
such as injection moulding or extrusion of polymeric melts through a capillary to produce 
fibres. The occurrence of a 'spurt jump' causes surface distortion of the extrudate, making 
the final industrial product more or less worthless. Therefore, the determination of a critical 
pressure gradient or volumetric flow rate, below which no spurt occurs is of great practical 
value in the manufacturing of polymeric melts in chemical industry. 

Malkus et al. used a non-Newtonian fluid model (the so-called Johnson-Segelman-Oldroyd 
fluid) that was described by (nonlinear) differential equations. Moreover, they restricted 
themselves to a two-dimensional shear flow through a slit die. Although the results of Malkus 
et al. did explain (amongst other things) the spurt phenomenon quite satisfactorily, we are of the 
opinion that a polymeric fluid is more adequately described by a nonlinear viscoelastic model 
than by a fluid model. Such a viscoelastic model will lead to integrodifferential equations (due 
to the hereditary effect) rather than differential equations. To describe the elastic response of 
the dissolved polymer, we have exploited a so-called Kaye-Bemstein-Kearsly-Zapas (KBKZ)- 
model (see [4, p. 141]) with an extra viscous term, due to the small-molecule solvent. As a 
generalisation of [2] we consider the three-dimensional axisymmetric shear flow through a 
pipe (Poiseuille flow). Since in simple shearing the second normal stress difference may be 
neglected, we use Wagner's modification (see [4, p. 209]) of the KBKZ-model. The constitutive 
equation contains a hereditary integral, the kernel of which is taken from the form as explored 
by Papanastasiou (see [4, p. 213]). The extra viscous term will dominate the initial response 
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of the fluid. As we shall show in the sequel, the occurrence of this term is essential for our 
further considerations. 

The description of the Poiseuille flow of such a fluid leads to an integrodifferential equation 
for the total amount of shear for a given pressure gradient. This equation will be derived in 
Section 2. It is assumed that the pressure gradient is either constant from the start or reaches 
a stationary value within a restricted time interval. If the pressure gradient is prescribed, the 
volumetric flow rate is still an unknown of the problem for which a global relation will be 
derived. The flow starts at t = 0 (for t < 0 the fluid is at rest) by a sudden application of the 
pressure gradient. After the transient phase in which the flow is not stationary, the flow reaches 
a steady state profile. Due to the high viscosity of the fluid, inertia terms will be neglected 
throughout. 

In Section 3 the steady state solution is derived, that is, we have calculated the stationary 
velocity gradient oa as function of the radial coordinate r (w = w (r)). In addition, this gradient 
also depends upon the stationary value f of the pressure gradient. However, this solution is not 
always unique, depending on the value of the quantity F = F(v )  := r f / 2 ,  which represents 
the magnitude of the shear stress at v. For a certain range of values for F ,  three distinct 
solutions for the steady state velocity gradient exist. The first essential question is which of 
these three states will be attained by the fluid after the transient phase. The second question 
concerns the (in)stability of these states (of course this question is related to the first one). 
The answer to this stability question will be given in Section 4. In Section 5 we present 
some results of numerical simulations. These numerical computations confirm the stability of 
the different states and show which particular steady state will be attained in case there are 
two stable ones. Moreover, the influence of the hereditary effect is observed by changing the 
stationary value of the pressure gradient. This involves understanding phenomena related to 
spurt, such as shape memory and hysteresis. Finally, in Section 6 we recapitulate the main 
conclusions of our paper. 

2. Mathematical formulation of the Poiseuiile flow of a KBKZ-fluid 

The flow of an incompressible viscoelastic fluid under isothermal conditions is governed by 
the conservation of mass 

V .  v = 0 (2.1) 

and the balance of linear momentum 

V . T + p b = p  ~ - + ( v . V ) v  . (2.2) 

Here, p is the (constant) fluid density, b the body force per unit of mass, v the particle velocity 
and T the total (symmetric) stress tensor. Later on we shall show that for strongly viscous 
fluids the inertia forces, represented by the right-hand side of (2.2), can be neglected. 

The characteristic response of the material is described by the constitutive equation for 
the stress. For viscoelastic fluids with fading memory, the stress depends on the deformation 
history. If a polymer solution contains a small-molecule solvent, this solvent will generally 
respond in a viscous manner to any signal, separately from the elastic response due to the 
dissolved polymer. Therefore, it is assumed that the extra stress in the fluid consists of a 
viscous component and an isotropic elastic one, namely 

T + p Z  = 2rl,~D + Sp. (2.3) 
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Here, p is the pressure, 27 the unit tensor and Z) is the rate-of-deformation tensor defined by 

1 ( V v  + ( v v ) r ) .  (2.4) Z~=~ 

Moreover, rls is the coefficient of Newtonian viscosity. Finally, the elastic part Sp characterizes 
the polymer contribution, and this part is here assumed to be described by a KBKZ-model (cf. 
[4, p. 141]), which in its general form reads 

/~" ( O0~C_I C-1 OU d) d'r. (2.5) s p  = - oo 
Here, C is the strain tensor (see definition (2.7)), C -1 (the Finger tensor) is its inverse, Ie and 
Ic-1 are the first invariants of these tensors, and the potential U is in general a scalar function 
of Ic, I¢-1 and t - ~'. We use Wagner's modification of the KBKZ-model for shearing flows 
by choosing OU/OIc-~ = m(t  - r )K(Ic-~  ) and OU/OIc = 0 (see [4, p. 2091). If we use 
the kernel K explored by Papanastasiou et al. (see [4, p. 213]) and restrict ourselves to one 
relaxation rate A, then equation (2.5) becomes 

f t  d'r, (2.6) 
#A C-le-A(t-T) 

Sp = - ~  C + ic_, 

where c, # and )~ are material constants. When a material particle moves from position ~ at 
time r to x at time t (-r ~< t), the strain tensor d is given by 

O~ 
d = .T'T~ ", U = ~xx' (2.7) 

and its inverse is 

d-1 = ~ - - l ~ - r .  (2.8) 

In this paper we study an axisymmetric shear flow in a tube with radius R, starting at time 
t -- 0. With this flow aligned along the z-axis the flow parameters are independent of the axial 
coordinate z and the azimuthal coordinate 0. Hence, the velocity takes the form 

v = v(r, t )H( t )  ez, (2.9) 

where H is the (Heaviside) step function. The conservation of mass is now automatically 
satisfied. The no-slip boundary condition at the wall and regularity of the velocity at the axis 
require 

v(n ,  t) = 0, (2.10) 

and 

0v  (0, t) = 0, (2.11) 
Or 

respectively. To determine the stress components we need the strain tensor C and its inverse. 
With the momentary position at time t represented in cylindrical coordinates by x = re'. + zez, 
the position of the same particle at an earlier time 7- is 

( f '  ) R = re,, + z - v ( r , s )H(s )  ds ez. (2.12) 
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Then (2.8) yields (10 ) 
g - l =  0 1 0 

- 7  0 1 + ")̀ 2 

and I c-  1 = 3 + ")`2, where 

(2.13) 

f t s)H(s)  ds, t >1 T, (2.14) 
OV 

7 = 7 ( r , t , ~ - )  = - ~ ( r ,  

is the magnitude of the shear strain at time t when the strain is applied at time r.  For r < 0 
no motion is observed, hence 

7( r , t , , - )  = 7 ( r , t ,  0), ," < 0. (2.15) 

In terms of 7, the stress components according to (2.3) and (2.6) become 

/ ~  1 - ,x(t- , )  
Trr = TOO = - p  + laA oo c + 3 + 72(r, t, T) e dT, 

f ~  1 + 72(r ,  t, T) e_~(t_r)  Tzz = - P  + #A dT, 
oo c + 3 + 72(r ,  t, T) 

(2.16) 
~ 7(r, t, T) e_A(t_r) 

TTz = OS Or -- #A dT o¢ e +  3 + 7 2 ( r , t , T )  

TTO = Toz=O,  

where p = p(r, z, t). The balance of linear momentum (2.2), with pb = O, is satisfied if the 
pressure p takes the form 

p(r, z, t) = - f ( t ) z  + po(r, t), (2.17) 

with 

~_ 1 e_A(t_~- ) 
po(r, t) = #A ~ c + 3 + 72(r, t, T) d T +  Po(t), (2.18) 

and if the shear stress T~z equals 

1 p [ ~  Ov 
T~z = - ~  r f ( t )  + -r Jo ~ -~- (~,t) d~. (2.19) 

Here, f is the pressure gradient driving the flow and Po is a further irrelevant pressure term. 
Substitution of (2.19) into (2.16) results in the following relation between the velocity and the 
pressure gradient: 

o~  (r, t) 7(r ,  t, o) e_:, ~ [~ ,),(,-, t,-,-) e_:,(~_.)  
r/s O r  -- /.t e -t- 3 -t- 72(r ,  t, 0) -- #A -v c +  3 + "/Z(r, t, 7-) dT 

1 p [ ~  Ov 
= - g r y ( t ) + - r J o  ~-~- (£ , t )  d~, 0 ~ < r ~ < R ,  t > 0 .  (2.20) 
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Equation (2.20) can be made dimensionless by scaling length by R and time by )~-l. Fur- 
thermore we introduce dimensionless variables ~, f and "~ by writing v = ,~Rv/7+ 30, 3' = 
~/c + 3~/, y = # ] / ( R v / 7 +  3), and the two dimensionless material parameters e and c~ by 

e = (c + 3) r/8)~ PR 2)~2 - - ,  a = ( c + 3 )  (2.21) 
# # 

Then (2.20) turns into its dimensionless form, reading (since no confusion will arise we omit 
the tilde) 

ov (r, t) + h ( r ( r ,  t))e - t  + h(3"(r, t, r ) )e  - ( t - ' )  dr  

fo ~ Ov =21 rJ'(t)-Tc~ ( -g- / - ( ( , t )  d(,  0 ~ < r ~ < l ,  t > 0 ,  (2.22) 

where the function h is defined by 

x 
h(x) -- 1 + x 2' (2.23) 

while the variable F represents the total amount of shear 

f0 t (r, s) ds, ~< r ~< 1, /> (2.24) 
Ov 

r ( , - ,  t)  = 3"(,-, t ,  o) = - 0 t O. 

So 3' can be expressed in terms of F as 

3 " ( r , t , r ) = F ( r , t ) - F ( r , r ) ,  0~<r<~ 1, 0 ~ < r ~ < t .  (2.25) 

The parameter e represents a ratio of the Newtonian viscosity rls to the shear viscosity # /A 
and the quotient c~/e corresponds to the Reynolds number. For the highly elastic and viscous 
polymers we describe in this paper, c~ << 1. Thus, the last term in the right-hand side of (2.22) 
may be neglected. In the original equation this amounts to the neglect of the inertia terms. 
With the last term neglected and after division by r/2, equation (2.22) becomes 

2 0 v  2 2 ft 
- e  - (r ,  t )  + - h ( r ( r ,  t))e - t  + - Jo h(3"(r, t, r ) )e  - ( t - r )  d r  = Y(t) .  (2 .26)  

r ~ r r  7" r 

The right-hand side of (2.26) is independent of r. Therefore, it is necessary that 

- lim 1 0 v  (r, t) =: u(t) (2.27) 
~10 7 

exists (as we shall assume here). By letting r $ 0 in (2.26) and performing one integration 
by parts, we obtain an expression for the pressure gradient f ( t )  in terms of the function u(t) 
defined above, i.e. 

/: f( t)  = 2eu(t)  + 2 u(r)e -(t-r) dr. 

The inverse of  this relation is 

' ' /o ~ [ 
u(t) = ~ f ( t )  2e 2 f ( r )  exp - - -  

(2.28) 

1 +e ~ (t - r)] dr,  (2.29) 
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which can be used to calculate the function u when f is given. The boundary conditions 
pertinent to (2.26) read in dimensionless form 

v(1, t ) =  Ov ( 0 , t ) = 0 ,  t > 0 .  (2.30) 

We conclude this section by deriving an expression in terms of 1-" for the volumetric flux Q 
defined by 

Q(t) = 27r v(r, t)r dr, (2.31) 

or in dimensionless form 

/o 1 (~(t) = 2 #(r, t ) r  dr, (2.32) 

where (~ --- Q/(TrR3Av'c + 3). After one integration by parts with the aid of (2.30), relation 
(2.32) transforms into (omitting the tilde) 

fo Ov Q ( t )  : - -  r 2 (r, t) dr. (2.33) 

Integration of (2.33) with respect to t yields a relation between the total amount of shear and 
the volumetric flow, of the form 

/0' Jo l Q(T)  d T =  r 2 r ( r ,  t) dr. (2.34) 

Since, according to (2.26), F is determined by f( t) ,  relation (2.34) provides an (implicit) 
relation between Q and f .  

3. The steady state solution 

In this section we investigate the asymptotic behaviour of the flow profile as t -+ co. It turns 
out that the velocity profile reaches a steady state (in which the flow variables are independent 
of the time) as t -+ co. This steady state plays an important role in the explanation of the spurt 
effect. The steady state velocity profile will be expressed in terms of the steady state velocity 
gradient w, defined by 

w(r) = lim Ov t-- ,~--~r (r,t), w(O) = O. (3.1) 

From the stability analysis in Section 4 it follows that this steady state velocity gradient exists. 
In this section we shall derive an equation for w. Let the pressure gradient f ( t )  be prescribed 
and take (~ = 0 in equation (2.22). For t -+ co this equation turns into a relation between the 
steady state velocity gradient w and the given pressure gradient f .  

PROPOSITION 3.1. The steady state velocity gradient w defined by (3.1) satisfies 

~0 °° T e -'r l -- 
ew(r) + w(r) 1 + w2(r)'r 2 d'r ---- ~ r f ,  0 ~< r ~< 1, (3.2) 

if 

f = lim f ( t)  
t ---+~ 

exists. 

(3.3) 



Poiseuille f low o f  a KBKZ-fluid 377 

Proo f  Given the existence of f ,  suppose that also w(r) ,  as defined by (3.1), exists (this will 
be confirmed by the results of Section 4). Then for t --+ oo, the first and last terms of equation 
(2.22) (with a = 0) tend to ew(r)  and r- i /2 .  Since h is bounded, the function h(1-'(r, t))e - t  
vanishes for t --+ c~. Hence, to verify that equation (2.22) turns into equation (3.2) as t --+ c~, 
it remains to prove that 

lim i t  t--.¢¢ ./o [h('~(r, t, r ) )  - h(w( r ) ( t  - T))]e - ( t - ' )  d T =  0. (3.4) 

Let 5 > 0, then there exists a time TI such that 

O-~r r ( r , t ) - t - w ( r )  < 5, t >T1.  (3.5) 

Choose to > T1 arbitrary and let T = max{to, Tz}, where T2 is such that 

£o 
e - t  Ih('y(r,t,r))-h(w(r)(t-r))le'dr<5, t>T2. (3.6) 

For all t > to the remaining integral over [to, t] is bounded by 

Ih(-y) - h(w( t  - r ) ) le  - ( t - ' )  d r  ~< I'),(r, t, r)  - w ( r ) ( t  - ~-)le -(t-T) d r  < 5, 

(3.7) 

We introduce the integral J defined by 

9~0 °° Te -~" J (w)  = w 1 -~- ~2T2 dT. (3.9) 

Then the steady state velocity gradient can be determined for each r E [0, 1] by solving 
w = w(r)  from 

ew + J (w)  = F, (3.10) 

where F is given by F ( r )  = r f~2 .  The steady state velocity profile ~(r) is next obtained by 
integration of w(r) using the boundary condition at the wall. In the Appendix it is shown that 
the function 

7 ( ~ ; s ) : =  s~ + J ( ~ ) , ~  ~ 0, (3.11) 

is nonmonotonic in w when 0 ~< e < el, where el = - J ' ( w * * )  = 0.02886. In Fig. 1 the 
function 9r(w; e) is plotted if 0 < e < el. Since the viscosity 0s of the small-molecule solvent 
is small in comparison to the shear viscosity #/)~, we will henceforth assume that 0 < e < el. 
Then the function .Tr(w; e) has two extreme values, a maximum FM = ewM + J (wM)  at 
w = WM and a minimum Fm = e W m  q- J(wm)  at w = win; see Fig. 1. If e J" e l ,  the two 

since (3.5) implies 

lT ( r , t , r )  - w ( r ) ( t  - T)I < 8(t  -- "r), to ~< T ~< t. (3.8) 

The inequalities (3.6) and (3.7) imply that the integral in (3.4) is bounded by 25, for all t > T. 
This completes the proof. [] 
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Fig. 1. The function .T'(w;e) = ew + J(~o), i f  0 < e < el .  In steady flow the velocity gradient a: satisfies 
5r(~o; e) = F ,  where F denotes the shear stress. 

1 

0 rM 

Fig. 2. The steady state velocity profile in supercritical flow with a kink at r = rM. 

extreme values coincide at the inflection point w** --- 2.6255. In addition to w ---- WM and 
w = win, both equations or(w; e) = FM and 0r(w; e) = F m  have a second solution, denoted 
by ifM and if,n, respectively; see Fig. 1. 

Since F ( r )  = r f~2 with constant f ,  F ( r )  reaches its maximum at the wall r = 1. This 
maximum, called F w  (= f / 2 ) ,  exceeds the maximum FM, if f > 2FM. Denote the critical 
pressure gradient by fcr i t  :---- 2FM and let 0 < e < el. Then in supercritical flow (i.e. f > fc r i t )  

equation (3.10) has 

• one solution if 0 ~< F < Fro, 

• three solutions if F m <  F < F M ,  

• one solution if FM < F <<. Fw; 
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see Fig. 1. Let rM := 2FM/-], then r M < 1 in supercritical flow. Consequently, we expect 
that if 0 ~< r < rM then w(r) < WM, whereas if rM < r ~< 1 then w(r) > &M. Hence, the 
steady state velocity gradient suffers a jump at r = rM, i.e. 

~VM = lim w(r) < lim w(r) = &M, (3.12) 
rTrM r~rM 

resulting in a kink in the velocity profile at r = rM; see Fig. 2. 

4. Stability analysis 

As the steady state equation (3.2) can have more than one solution, we investigate the stability 
of the different solutions and we establish which particular solution eventually will be attained. 
In this section especially the stability question will be discussed. To investigate the stability 
properties of any solution w we assume that the system is in the steady state at t = to; this will 
be accomplished by making a special choice for f ( t )  during the period 0 ~< t ~< to (see (4.4)). 
The steady state is then slightly perturbed at t = to. The behaviour of the perturbed solution 
for t > to determines the stability of the unperturbed solution: if the perturbed solution 
remains bounded (or tends to zero) then the unperturbed solution is (asymptotically) stable. 
The definitions of stability of solutions of integrodifferential equations used here are similar 
to the usual definitions for ordinary differential equations (see [5], [6] and [7]). 

To obtain an equation in terms of the total amount of shear, we substitute 

Ov OF 
Or ( r , t ) =  - ~  (r,t)  (4.1) 

into (2.26) and find the integrodifferential equation for r 

f0 o r  (r, t) + h ( r ( r ,  t ) )e  - t  + h ( r ( r ,  t) - r ( r ,  r ) ) e  -(t- '-)  d r  = g r I ( t ) ,  t > O. 

(4.2) 

Since f ( t )  can be prescribed, we choose f ( t )  for t ~< to, such that Or~Or = - w  (for given 
w) holds exactly for t ~< to. Then the total amount of shear equals 

F ( r , t )  = ~(r) t ,  0 <. t <~ to. (4.3) 

The corresponding function f = f~(t)  can simply be found by substituting (4.3) into (2.26), 
yielding 

f~( t)  = -r ew(r) + h(w(r) t)e  - t  + h (w(r )7 )e -"  dT , 0 <. t <. to. (4.4) 

Then limt--.~ f~o (t) = f ,  as occurring in (3.2). As the dependence on r is irrelevant for our 
stability analysis, we disregard this variable and represent all functions as depending only on 
t. 

To investigate the stability of the steady state associated with a given a J-value, we consider 
perturbations on this state for t > to. These perturbations can be thought of as due to a short 
pulse in the pressure f ( t )  at t = to, causing a small discontinuity in F (i.e. r(t0 +) ¢ r(to) = 
wto). From now on we consider only times t ) to. The perturbation of the velocity gradient 
is denoted by ~, so that 

Ov (t + to) = w + ~(t), t >. O. (4.5) 
Or 



380 A.C.T. Aarts and A.A.F. van de Ven 

Integration with respect to t of (4.5) yields 

F ( t + t o ) = w t + X ( t ) + w t o ,  t>.O, (4.6) 

where X is defined by 

J0 X( t )  = Xo + ((T) dT, t ) O. (4.7) 

Here, X0 stands for the jump in F at t = to. We replace t by t + to in (4.2), substitute (4.3) 
and (4.6) into (4.2), use relation (3.2) for w and represent the function h by a Taylor expansion 
around wt. Thus, we find an integrodifferential equation for X,  holding for t > 0, 

d X  fot at (t) = B( t  + to) - A( t  + to)X(t)  + a(t - T)X(T) aT + a(X( . ) ,  t, to), (4.8) 

with 

a(t) = _1 h,(wt)e_t, b(t) = _ f oo  a(T) aT, 
E d t  

/o A(t) = a(t) + a(T) dT, B(t) = [f(t) - 7] - wb(t), 

and 

t ,  t o )  - 

(4.9) 

1 {h,,(e,)e_(t+to)x2(t)+ x2(t) dT 
2e at 

+ fo th" (83 ) [X( t ) -  X(r)12e - ( t - ' )  d r } .  (4.10) 

Here, the prime denotes differentiation with respect to the argument. The functions Oi, i = 
1,2,3,  are given by 01(t) = w(t + to) + niX( t ) ,  02(t,T) = wr + n2X(t) and 03(t,T) = 
w(t -- T) + na[X(t)  - X(T)], for some ~ ,  i = 1, 2, 3, between 0 and 1. Since a E Ll(0,  c~) 
and A is locally integrable, the solution X of (4.8) is known to exist locally (see Driver [8]). 
The functional ~ in (4.10) is of 'higher order', which means that 

~(O,t) = O, and ~ (X , t )  = o(IIXII), IlXll -4 0. (4.11) 

Hence, ~ is locally Lipschitz continuous in X,  implying that the initial value X(0)  = Xo 
determines the solution uniquely. Under these conditions Grossman and Miller [5] proved that 
the stability of (4.8) is determined by the stability of its linear form (with ~ -- 0) 

L X'( t )  = B( t  + to) - A( t  + to)X(t)  + a(t - T)X(T) dT, X(O) = Xo. (4.12) 

The resolvent R associated with this linear equation, is defined as the unique solution of 

R'(t)  = - A ~ R ( t )  + a ( t -  T)R(T) aT, t > 0, R(0) = 1. (4.13) 

Here, A ~  is defined as the limit for t -4 eo of the function A, i.e. A ~  = -b(0) .  We shall 
show that the stability properties of (4.12) depend on the behaviour of R and its derivative. If 
R is locally integrable, then equation (4.12) is equivalent to its variation of constants form 

L X( t )  = R( t )Xo + R( t  - -  T)[B(T q- tO) q- C(T -{- to)X(T)] dT, t >1 O, (4.14) 
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as A and a are locally integrable (see [5] for details). Here, the function C is defined by 
C(t) = Ao~ - A(t)  and belongs to L 1 (0, oe). Since we are interested in the behaviour of ~, 
we differentiate equation (4.14) with respect to t and obtain 

((t)  = p(t)Xo + B( t  + to) + C(t  + to)X(t)  

+ p(t - -r)[B(T -k- tO) q- C(T -t- t0)X(7")] dr. (4.15) 

Here, the integral resolvent p is defined as the derivative of R by the relation 

/0' R(t)  = 1 + p(r) dr, (4.16) 

and satisfies (see Grossman and Miller [7]) 

p(t) = b(t) + b(t - r)o(r)  dr. (4.17) 

Since b(t) E L 1 (0, OO), the Paley-Wiener theorem [9, p. 601 states that p(t) E L 1 (0, ~ )  if 
and only if 

1 - b * ( z )  ,/: O, Re z/> 0, (4.18) 

where b* denotes the Laplace transform of the function b. Analogous to Miller [6], we show 
that the integrability of the integral resolvent is crucial. 

PROPOSITION4.1. I f  p(t) E Ll(O,e~) and B(t)  • Ll(0, eo), then the solution X ( t )  of  
(4.14) is bounded, whereas its derivative ((t) is bounded and tends to zero as t --+ ~ ,  
independent of  to. 

Proof. If p(t) and B(t )  • Ll(O, oo), then the functions R(t) (see (4.16)) and f~ ]B(r + 
to)[ d r  are bounded. This implies that there exist positive constants M1 and M2 such that the 
solution X of (4.14) satisfies 

IX(t)I <~ MIIXoI + Mz + M1 IC(r + to)llX(r)l dr, t >>. O. (4.19) 

By applying Gronwall's lemma to this equation we obtain 

{J0' } IX(t) I ~< (MllXo] + M2)exp M1 [C(r + to)l dr , t >>, O. (4.20) 

Since C(t) • L 1 (0, c~), X ( t )  is bounded for all t/> 0, independent of to. Hence, there exists 
a positive constant 11'/3 such that the derivative ~(t) satisfying (4.15), can be estimated by 

I~(t)l ~< Ip(t)llXd + IB(t + t0)l + M3IC(t + t0)l 

/0' + Io(t - r)l(IB(r + t0)l + M31C(r + t0)l) dr. (4.21) 

Since the convolution of two Ll-functions results in an Ll-function (by Fubini's theorem), 
the last term of (4.21) is bounded, implying that ~(t) is bounded for all t ) 0, independent 
of to. Moreover, p(t) (see (4.17)) and the last term of (4.21) tend to zero as t --+ e~, as the 
convolution of an Ll-function with a function that tends to zero yields a function that also 
tends to zero as t --+ ~ [9, p. 59]. Thus, ( ( t )  tends to zero as t --+ oe, independent of to. [] 
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LEMMA 4.1. I f  p(t) ¢ L 1 (0, oo) then the solutions X ( t )  and ~(t) are unbounded. 

Proof. This is trivial since p(t) f[ L 1 (0, oo) implies that R(t)  is unbounded. Hence, the 
solution X of (4.14) is unbounded, which implies by (4.15) that ~ is unbounded. [] 

Using these results in the Paley-Wiener theorem, we present the necessary and sufficient 
condition for stability of the solution w, expressed in terms of the function Gu, defined by 

Gw(z) = ewz + J(w) - J ( 1 - ~ z )  , R e z > - l .  (4.22) 

LEMMA 4.2. 
• l fG~(z )  # O for Re z >1 O, z # O, and G~(O) # O, then the solution oJ is asymptotically 
stable; 

• i fGu(z )  has a zero zo with Re z0 > 0, then the solution w is unstable. 

Proof. Since b' (t) = a (t) and b(0) = -Aoo,  the Laplace transform of the function b is equal 
to b* (z) = (a* (z) - A ~ ) / z .  Hence, condition (4.18) is equivalent to z - a* (z) + A ~  # 0 for 
Re z >t 0, z # 0, and b*(0) # 1. Calculation ofAo¢ = d(w) /ew and of the Laplace transform 
a* of the function a, 

I5 1/0= ' (1+2) a*(z) = a(t)e -zt  dt = - h'(~ot)e -(z+Ut dt = - -  d , Re z > - 1 ,  

(4.23) 

turns the condition into Goj(z) # 0 for Re z/> 0, z # 0, and limz--+o G~(z ) / z  = G~(O) # O. 
[] 

We investigate the zeros of G~(z) in the half-plane Re z/> 0. The derivative of G~ equals 

[ ' G~(z) = w e + (1 + z) -----------~ , Re z > - 1 ,  (4.24) 

implying that G ' ( 0 )  = w(e + J'(w)). To investigate if there are any zeros of G,o on the 
positive real axis we substitute z -- x, where x is real and positive. 

LEMMA 4.3. I f  O <~ w < WM or w > win, the function G~(z)  increases strictly on the 
interval (0, oo). 

Proof. Suppose0 ~< u; < WM. T h e n w / ( l + x )  < w < WM, x > 0, implies J ' (~o/( l+z))  > 
J'(wM) = --e (see Appendix). Substitution of this inequality into (4.24) yields 

[ ' ]  G ~ ( x ) > e w  1 ( l + z )  2 > 0 '  x > 0 ,  0<~W<WM. (4.25) 

Suppose w > win. F o r z  6 [O,~o/wm - 1) or z 6 (W/WM -- 1, oo), the variable w/(1 + x) 
exceeds w,,~ or remains below WM, respectively, implying that J ' (w/(1  + x)) > - e  in both 
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cases. Hence, inequality (4.25) also holds for z 6 [0, W/Wm - 1) U (W/WM -- 1, c~), W > Win. 
For W/O3 m -- 1 <<. x <~ W/O3 M -- 1, we can estimate G ~ ( x )  by 

= + > > O, 

w (4.26) 
WM <. ~ <~ Wm, W > Wm, 

since the function w 2 j ' ( w )  decreases strictly if w > w* (see Appendix.) [] 

L E M M A  4.4. For  x > 0 the function G ~ ( x )  has 

• no positive zeros i f  0 <<. w < WM or w > win, 
• at least one positive zero i f  WM < w < Win. 

Proof. Suppose 0 <~ w < WM or w > WM. Then Lemma  4.3 and G~(0) = 0 imply 
that G ~ ( x )  is positive for x > 0. For WM < w < win, G~(O) is negative. Since G ~ ( x )  = 
ewx[1 + o(1)], x --+ cx~, and G~(0) = 0, the function G~ must have at least one positive 
zero. [] 

L E M M A  4.5. The function Goa( z ) has no complex zeros in the quadrant Re z > 0, Im z > 0. 

Proof. Write z = x + iy =:  ((  - 1) + i~v, with ~ > 1 and u > 0, and define tr := 
( / w ,  ~ > O. The  function G ~ ( z )  has a real pan  

R e G , ( z )  = s  ~(~-or  1 ) + J  ( ~ ) - a [ ( l + v 2 ) T l ( v , a ) + T 3 ( v ,  tr)] (4.27) 

and an imaginary part 

Im G~(z)/.,,2 { (~)2 } = e + [(1 + u2)Tl(u ,  tr) - T3(u, or)] , (4.28) o" 
where 

fO °° the  -~ t  
T~(v,  or) = (1 -- b '2 -q- t2) 2 q- 4V 2 dr, n = 1, 3. (4.29) 

By elimination of  e f rom the two equations Re G ~ ( z )  = 0 and Im G ~ ( z )  = 0, we find 

R ( , , v ,  tr) :=  ( 2 ~ - 1 ) ( 1  + v2)Tl (V,  tr) + T 3 ( v , o ' ) -  ~-Jor ( ~ )  = 0 .  (4.30) 

Thus, Gw(z )  has a complex zero if and only if the two equations R({, v, ~r) = 0 and 
Im G w ( z )  = 0 have a solution. Numerical  calculations reveal that the equation 

(1 + v2)Tl(v,  or) - T3(v, ~r) = 0 (4.31) 

has a unique solution v = v0(tr), plotted in Fig. 3, while 

(1 + v E ) T l ( v ,  tr) - T 3 ( v , ~ r )  > 0, if v > v0(tr). (4.32) 
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Fig. 3. The curves  
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Also by numerical calculation we find that, for fixed ~ > 1, the equation R(~, v, (r) = 0 has 
a unique solution v = v~(tr), as plotted in Fig. 3 for ~ = 1, 2, 3, 4. From these calculations 
it is evident that v~(~r) > v0((r) for ~ > 1 and (r > 0. Hence, R vanishes only in the region 
v > v0, whereas Im G~(z)  > 0 in this region, according to (4.32). This implies that there are 
no triples (~, v, cr) such that the corresponding values of z and w satisfy Re G~,(z) = 0 and 
Im G~,(z) = O. [] 

Conclusion 

We conclude this section by recapitulating the results concerning the stability of the unper- 
turbed solution w. We proved that 

1. steady states with 0 ~< w < WM or w >Wm are asymptotically stable, 
2. steady states with WM ~ 0J ~< odm are unstable. 

Moreover, the stability analysis implies that l im,~oo-Ov(r ,  t ) /Or  = w(r )  exists (as we 
needed in the proof of Proposition 3.1). 

5. Some numerical results 

In this section we present some results of numerical calculations based on the integrodiffer- 
ential equation (4.2). These results will confirm the conclusions of our stability analysis and 
will provide extra information on such phenomena as spurt, shape memory and hysteresis. 
When starting up the flow from rest, given a fixed value 7 for the pressure gradient f ( t ) ,  the 
velocity gradient will attain a steady value w(r), where ~o lies either below WM or above win, 
whereas steady states with w between a;M and Uam are unstable and will never be attained. 

Consider experiments in which the flow is initially in a steady state, reached at time t = to, 
corresponding to a forcing fo, and the forcing is suddenly changed to 7 = f0  + A f .  If A 7  is 
positive, we call this process loading, otherwise unloading. Suppose I A f l  is sufficiently small 
to reach another steady state after some time. The outcome of this experiment depends on the 
initial state fo. Malkus et al. [2] discussed the quasi-static loading-unloading cycle, where 



Poiseuille flow of a KBKZ-fluid 385 

0.7 

Z2] " 
,~ 0 . 6  A:  f = 0 

B: 7 = 2FM = 0.7546 

o. c :  7 = 7=, , , ,  = 0 .8o 

D: 7 = F , , , 7 , , , , , / F u  = o.rc, o s  

0.4 E: 7 = 2Frn = 0.7173 

0.3 

0.2 

0.1 

D i 

// 

A 
----%1 , , , 1 0'.2 0.3 0.4 o'.s 0'.6 0.7 o.s 

- :  

Fig. 4. Hysteresis under cyclic load. The stationary volumetric flow Q versus the loading f ,  with e = 0.02 and 

fmax = 0.80. 

the load is gradually increased from 7 = 0 up to fmax > fcrit, followed by an unloading 
sequence until the initial state f = 0 is reached. During the first part of the loading, where 
f < fcrit = 2FM (subcritical flow) the entire flow is classical: the velocity gradient satisfies 
w(r)  < WM and is continuous in r for all r E [0, 1]. In Fig. 4 the stationary volumetric flow 

= f01 r2w(r) dr  (cf. (2.33)) is depicted as a function of f ;  the curve AB corresponds to 
the subcritical flow. When the flow becomes supercritical ( f  >/ fcrit) a kink in the velocity 
profile forms at the wall, moving away from the wall to a position r -- rM = 2FM/-f, 
for further increasing 7- The high values of the velocity grad ien tnear the  wall cause an 
enormous increase of the volumetric rate (curve BC in Fig. 4). For f = fmax the spurt layer 
r* <~ r <~ 1, where r* = 2FM/fmax, is of maximum thickness. From this point we start to 
unload. At first the spurt layer remains fixed between r = r* = 2FM/fmax and r = 1; this 
phenomenon called shape memory corresponds to the path from C to D in Fig. 4. During 
this unloading the magnitude of the shear stress [Trz I = F at r* decreases according to 
F* := F(r*) = r ' f / 2  = FMf/fmax. If F* fails below Fm (i.e. if f < Fm-fmax/FM), the 
boundary r = rm := 2Fm/f  of the spurt layer moves back towards the wall for further 
decreasing f -  This loss of shape memory corresponds to the path from D to E in Fig. 4. The 
spurt layer disappears for f = 2Fro (i.e. rm = 1, which corresponds to point E in Fig. 4) and 
after that ( f  < 2F~)  the flow becomes entirely classical again. In the final unloading path 
EA, the flow is classical and this path coincides with the initial part of the loading curve. The 
phenomenon that no part of the loading curve in Fig. 4 is retraced until the flow has become 
entirely classical again, is typical for hysteresis. 

The loading-unloading behaviour of the flow as described above, is confirmed by the results 
of numerical calculations of the velocity gradient. At t --- 0 the velocity profile is parabolic 

v(r,O) = )f(''0------2-' (1 --r2) ,  0 < r < 1, (5.1) 
4e 
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Fig. 5. The velocity gradient -Or(r, Q/Or for e = 0.02 and f(t)  = 0 .8H( t ) ,  computed by Euler 's  forward 
discretisation method with step length ht = 0.005. The steady state velocity gradient jumps at r = rM = 0.9432. 

as can be obtained by letting t $ 0 in (4.2). For t > 0 the velocity gradient -Ov/Or = OF/Or 
is obtained by computing the total amount of shear F(r,  t) as solution of equation (4.2) for a 
fixed value of r and the pressure gradient f ( t)  prescribed. We solve this differential equation 
with initial condition F(r, 0) = 0 by using Euler's forward discretisation method with a fixed 
step length. The integral is approximated by the trapezoidal role. Since e is small, the term 
eOF/Ot determines the initial response of the fluid, implying that the step length must be 
sufficiently small. Because of the hereditary effect we have to use all values of F(r,  r ) ,  7- <~ t, 
to compute F(r,  t). However, for t sufficiently large (t > T) the integral can be approximated 
by the integral over the interval It - T, t], since 

/0' fl h(7)e -(t-~-) dT -~ h(7)e -(t-r) d T +  O ( e - T ) ,  T ---+ (x). ( 5 . 2 )  
T 

By choosing T = 20, we prevent the exponential growth of the number of calculation steps 
for increasing time. 

The total amount of shear is computed for a prescribed pressure gradient of the form 

f ( t )  = ] g ( t ) ,  (5.3) 

and we take e = 0.02(< el) and f = 0.8 > fcrit = 2FM = 0.7546 to let the flow be 
supercritical. In Fig. 5 the computed velocity gradient as a function of t is plotted for some 
values of r. We observe that the velocity gradient approaches a steady state value, equal to 
the solution w numerically computed from ew + J(w) = r f / 2  and represented by the dotted 
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Fig. 6. The velocity gradient -Or(r, t)/Or for e = 0.02 under a changing load f(t) = 0.80H(t)  - 0 .02H(t  - to) 
at to = 27, computed by Euler's forward discretisation method with step length h~ = 0.005. The steady state 
velocity gradient after change of load jumps at r = r* = 0.9432. 

D 

lines in Fig, 5. As long as 0 ~< r < VM = 2 F M / f ( =  0.9432 for ~ = 0.02 and f = 0.8), the 
steady state value w(r)  lies between 0 and WM. At v = rM, the steady state velocity gradient 
jumps from a value below WM to a value that exceeds 03M(> tom); see Fig. 1. Hence, for 
r < r M the steady state solution w satisfies to(r) < tOM = 1.7063, whereas for r > r M it 
satisfies w(r)  > 5:M = 9.0094; see also Fig. 8a. 

The process of  unloading is numerically implemented by prescribing the pressure gradient 
as  

f ( t )  = foB( t )  + ( f l  - f o ) n (  t - to), (5.4) 

where to is sufficiently large to achieve a steady state at t = to. We take e = 0.02, fo  = 0.80 
and to = 27. To account for the phenome__non of shape memory, related to a position between 
the points C and D in Fig. 4, we choose f l  = 0.78 > Fm7o/FM = 0.7605. The numerically 
computed solution following from this change of load is plotted in Fig. 6. We observe that 
after the load has changed from f0  = 0.80 to f l  = 0.78, the jump in the steady state velocity 
gradient is still situated between v = 0.94 and v = 0.95, implying that the boundary of the 
spurt layer remains fixed at the maximum position r = v* = 2FM/7O = 0.9432. This is 
called shape memory, because the spurt layer remains unchanged, regardless of  the change in 
loading. The set__of w(r)  values (for v E [0, 1]) can be read off from Fig. 8b. 

The choice f l  = 0.75 satisfies 71 > 2Fm = 0.7173 and f l  < Fm7o/FM = 0.7605. 
This corresponds to a position between the points D and E in Fig. 4, where the kink forms at 



388 A. C T. Aarts and A.A.E van de Ven 

12 

Ov(,.,t) 
Or 10 

, .  = 1 . 0 0  

t O m  

r = 0.96 

4 I- I / / \ , .  = 0 . 9 5  

, .  r = 0 . 9 0  

0 
0 5 10 15 20 25 30 35 40 45 50 

• t 

Fig. 7. The velocity gradient -Or(v, t)/Or for ¢ = 0.02 under a changing load f(t) = 0.80 H(t) - 0.05 H(t - to) 
at to = 27, computed by Euler's forward discretisation method with step length h~ = 0.005• The steady state 
velocity gradient after change of load jumps at r = rm = 0.9564. 

F 

FM 

.1 

.rM F* .~-x.~.. . . . , .~..~" 

I 
tOm ~M tO(,.') ~(r')  

F~ 

f '  

~m tOm 

r 

.1 

• , . r n  

Fig. 8. The set of w-values for different values of the stationary pressure gradient f .  a Loading with 
-f > Lnt = 2FM. b Unloading with fo > Lnt and Fm-fo/FM < f l  < fo. c Unloading with f0 > ~nt 
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r = rm = 2 F m / f l  = 0.9654. In Fig. 7 the solution for this particular loading is presented. 
We observe  that when the load is equal to f l  = 0.75, the j ump  in the steady state velocity 
gradient occurs between r = 0.95 and r = 0.96, which is closer to the wall than its position 
for  f = 0.80. This moving  back of  the spurt layer boundary to the wall  corresponds to loss of  
shape memory .  As shown in Fig. 8c, the j ump  in the velocity gradient is now f rom the value 

~m < O.;M to Win. 
We conclude that the numerical  calculations support our expectat ions concerning the 

occurrence and the specific behaviour  of  a j ump  in the velocity gradient under  a loading- 
unloading cycle,  as expressed in the beginning of  this section. 
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6. Conclusions 

Stability analysis and numerical simulations have been used to analyse the Poiseuille flow of 
a KBKZ-fluid supplied with an extra viscous term. This fluid model describes the behaviour 
of highly elastic polymeric fluids. The addition of a viscous term, leading to a nonmonotonic 
constitutive behaviour, is essential in this analysis: A kink in the velocity profile, due to a 
jump in the steady state velocity gradient, provides an explanation of the spurt phenomenon. 
Hence, internal material properties of the fluid itself account for the spurt phenomenon and 
not a global external effect as 'wall slip'. Since in industrial practice this spurt effect distorts 
the extrudate by forming a pattern of irregularities at its surface, a good estimate of the 
critical value of the pressure gradient (or the associated critical stationary volumetric flow 
rate) beyond which spurt occurs, is of great practical value. 

The aspect which distinguishes our approach from that of [2], where a differential equation 
is used, is that we analysed a nonlinear viscoelastic constitutive equation containing a memory 
integral, leading to a nonlinear integrodifferential equation. Recapitulating our main results 
we proved by analytical means that 

• for t --+ oo, the flow reaches a steady state; 
• if the stationary pressure gradient exceeds a critical value, equation (3.2) has three 

distinct solutions for the steady state velocity gradient w(r) for a certain range of the 
radial coordinate r; 

• a steady state w with wM <~ w <<, wm is unstable; 
• steady states ~o with 0 ~< w < WM or w > ~om are stable. 

Numerical results showed how and under which conditions the different stable states are 
attained. This strongly depends on the radial position and the deformation history of the fluid. 
In this respect, our calculations reveal that for supercritical flow in the loading phase, the 
flow reaches its steady state gradually as long as r < r~v/ (i.e. F ( r )  < FM) (see e.g. Fig. 
5). However, for r > rM one observes a rather small time interval in which the velocity 
gradient jumps from a value below OJM to a value that exceeds ~OM, after which the flow 
becomes gradually stationary. Since the latter 0J-value is much larger than the first one, a kink 
in the velocity profile appears at r = rM. In the layer near the wall, the so-called spurt layer, 
the magnitude of the velocity gradient is very large, which causes an enormous increase of 
the volumetric flow rate. Since in our analysis the no-slip boundary condition ~(1) = 0 is 
maintained (see Fig. 2), wall slip cannot account for this effect. 

In the unloading phase the following peculiarities are observed: 

• As long as the unloading is small enough, the spurt layer remains fixed; this effect is 
referred to as shape memory; 

• the velocity gradient first decreases rapidly, after which it gradually becomes stationary 
again; 

• when the unloading step exceeds a certain value, the thickness of the spurt layer starts to 
decrease and the layer disappears as soon as the flow becomes subcritical again; 

• the unloading and loading paths do not coincide, implying the occurrence of hysteresis. 

Up to now, the observations listed above are only supported by numerical calculations. 
A mathematical proof for the qualitative behaviour of the fluid remains for further research. 
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Due to the integrodifferential character of  our equations, an analogy with the methods used 
by Malkus et al. [2] is not possible. However,  we expect  that a continued study of  e.g. 

• the relationship between the shear stress and the (first) normal stress difference, 
• the asymptotics for small e-values, 

will provide a further insight in the problem under consideration. Hence, one of  the aims 
of  our future investigations is to derive an analytical explanation for effects such as shape 
memory  and hysteresis. 

Another  peculiar effect, not yet mentioned, that is observed in experiments as well as in 
industrial circumstances, is the occurrence of  the so-called 'shark-skin' instabilities at the 
surface of  an extrudate (cf. [10]). These shark-skins occur in extrusion processes before spurt 
turns up. It is very well possible that these effects, which show a typical time scale behaviour, 
are associated with the sudden increase of  the velocity gradient in the loading phase as depicted 
in Fig. 5. This small time scale behaviour is related to the small value of  e. This supports once 
more  the expectation that a study of  the asymptotics with respect to e will lead to a better 
understanding of  the flow problem under consideration. 
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Appendix Properties of J (~) 

The function J ( w )  defined in (3.9) may be expressed in terms of  sine and cosine integrals 
[11], (5.2.13), as 

J ( w )  = w - l g ( w - 1 ) ,  
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where # is the auxiliary function [11], (5.2.7), 

g(z)  = - C i ( z )  cos z -  (Si(z) - !7r) sin z. 2 

As a consequence, we have the following expansions: 

J (w)  - + - -  + O ~  ) 6o--+c~, ( A . 1 )  
w w 2w 2 2w 3 w'~ ' 

and 

J (w)  = w - 6w 3 + O(wS), w --+ 0. (A.2) 

Here, C = 0.57721 . . .  is Euler 's  constant. The derivative J '  of  the function J is obtained by 
differentiation inside the integral sign and integration by parts, yielding 

~o ~ r2 _ r 1 - L(w) a(w) 
a ' (w)  = 1 + w2r 2 e - "  d r  -- w2 ~ ,  (A.3) 

where the integral L is defined by 

jr0 ° e - r  L(w)  = 1 + w2r 2 dr. (A.4) 

Numerical calculations reveal that on the interval [0, cx)) the function J is non-negative with 
one maximum J(w*) = 0.34794 at w = w* = 1.2979. Its derivative a '  has one minimum 
J'(w**) = -0 .02886  at 6o = 6o** = 2.6255. Hence, a '  decreases strictly on the interval 
[0, 6o**] with J '  (0) = 1, whereas on [6o**, ~ )  it increases strictly to zero. In Fig. 9 the function 
J(ro) is plotted. I f 0  < e < el :=  -g'(ro**) = 0.02886, the function e + g'(ro) has two zeros 
denoted by 6oM and 6ore. Let 6om < 6ore, then 6o* < 6oM < 6o** < 6ova. Thus, i f0  < e < el,  the 
function U(w; e) = ew + J (w)  has two extreme values, a maximum FM = eWM + J (wM)  
at 6o = 6OM and a minimum Fva = erova + J(rova) at w = 6ova. Moreover, the equations 
~(6o; e) = FM and .T(ro; e) = F m  both have a second solution (in addition to WM and wva), 
denoted by 03M and &va, respectively. Numerical values of 6OM, 6ova, FM, Fva, &M and ~bva for 
various e are given in Table 1. 
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Table 1. The zeros w M and ~o,~ o f the function tg~(w; e ) / Ow for different values of e (0 < e < e i ), 
the maximum FM = ~(WM ; e) and minimum F m =  .T'(wm; e), and the zeros CbM of.T'(w; e) -- FM 
and cb,,~ of.Tr(w; e) - Fro, where .~'(w; e) = ea~ + J(w). 

WM FM ~M Wm Fm ~m 
(=  ea;M + J(WM)) (=  eWm -t- J(wm))  

0.010 1.4519 0.36164 25.4974 9.9609 0.28661 0.4703 

0.020 1.7063 0.37730 9.0094 5.2439 0.35867 0.9242 

0.025 1.9463 0.38637 5.5151 3.9248 0.38149 1.3454 

Another useful property is that the function w2Jl(w) decreases strictly for w > w*. If  
co* < w < w**, this is trivial since d{w2J'(~o)}/d~ = 2 w J ' ( ~ )  + w2J"(w) < 0. By 
representing J "  in terms of  J and L (by integration by parts), we transform this derivative 
into 

do~ 
1 [2L(oJ) 1 J(w)] 

w 
(A.5) 

For w >/w** the right-hand side of  (A.5) is negative since L is a strictly decreasing function 
with L(~o**) = 0.36177. 


